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An iterative statistical approach to the 
identification of protein phosphorylation 
motifs from large-scale data sets
Daniel Schwartz & Steven P Gygi

With the recent exponential increase in protein phosphorylation 
sites identified by mass spectrometry, a unique opportunity 
has arisen to understand the motifs surrounding such sites. 
Here we present an algorithm designed to extract motifs 
from large data sets of naturally occurring phosphorylation 
sites. The methodology relies on the intrinsic alignment of 
phospho-residues and the extraction of motifs through iterative 
comparison to a dynamic statistical background. Results show 
the identification of dozens of novel and known phosphorylation 
motifs from recently published serine, threonine and tyrosine 
phosphorylation studies. When applied to a linguistic data set 
to test the versatility of the approach, the algorithm successfully 
extracted hundreds of language motifs. This method, in addition 
to shedding light on the consensus sequences of identified 
and as yet unidentified kinases and modular protein domains, 
may also eventually be used as a tool to determine potential 
phosphorylation sites in proteins of interest.

As research in molecular biology moves forward it has become increas-
ingly clear that few cellular processes are unaffected by protein phos-
phorylation. Protein degradation, localization and conformation as well 
as protein/protein interactions are only some of the functions in which 
protein phosphorylation has been implicated1,2. Furthermore, protein 
phosphorylation levels are central to our current understanding of cell 
division and signal transduction pathways in both normal and diseased 
cell states3. Yet, relatively little is known about the majority of protein 
kinases in the human proteome. Only approximately one-tenth of the 
estimated 500–600 human protein serine, threonine and tyrosine kinases 
have known consensus sequences for their sites of phosphorylation4. 
Even when consensus sequences are known, in vivo protein substrates 
are often lacking.

To date, the task of understanding kinase recognition sequences has 
progressed mainly by a ‘kinase-driven’ approach whereby a kinase of 
interest is incubated with a combinatorial peptide library and ATP. 
Edman degradation of the phosphorylated peptides, which have been 

enriched using a ferric column, leads to the creation of a position-weight 
matrix of the data and hence the consensus sequence5. Though the 
kinase-driven approach has had much success in identifying optimal 
kinase consensus sequences and substrates, it has suffered from the fact 
that optimal in vitro binding is often kinetically unfavorable in the cel-
lular environment, thus leading to motifs that are rarely found in the 
proteome.

Here we present an attempt to start with known biologically phosphor-
ylated substrates from unknown kinases and discover motifs through 
a ‘substrate-driven’ approach. In the past, the low number of localized 
phosphorylation sites cited in the literature made substrate-driven 
approaches to determining kinase consensus motifs difficult. However, 
refinements of several affinity-based strategies such as immunoaffinity6, 
immobilized metal affinity chromatography (IMAC)7 and strong cation 
exchange (SCX) chromatography8, coupled with the enabling technol-
ogy of tandem mass spectrometry have more than doubled the number 
of phosphorylation sites identified in the past year alone, with several 
studies reporting from several hundred to several thousand sites6,8–13.

Two of these recently published large-scale mass spectrometry stud-
ies were chosen as test sets for our motif-building algorithm. The first 
study used SCX for the enrichment of phosphopeptides from HeLa 
cell nuclei, resulting in the elucidation of 1,594 unique phosphoserine 
and 195 unique phosphothreonine sites8. The second study used an 
antiphosphotyrosine antibody to enrich for phosphorylated tyrosine 
residues in pervanadate-treated Jurkat cells (151 sites), cells express-
ing constitutively active NPM-ALK fusion kinase (237 sites) and cells 
expressing constitutively active Src kinase (185 sites)6.

Overview of the method
A schematic of the motif extraction algorithm is shown in Figure 1. The 
method commences with the establishment of two parallel sequence 
data sets: the phosphorylated peptide data set from which motifs will 
be built, and a peptide data set used for background probability calcula-
tions. Next, the two data sets are converted into position-weight matrices 
of equal dimensions whereby each matrix contains information on the 
frequency of all residues at the six positions upstream and downstream 
of the phosphorylation site. Using the information encoded in these 
two matrices, a third matrix, the binomial probability matrix, is created. 
Specifically, this matrix contains the probability of observing s or more 
occurrences of residue x at position j (taken from the phosphorylation 
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matrix), given a background probability P for residue x at position j 
(taken from the background matrix).

The motif-building step of the algorithm is a greedy recursive search 
of the sequence space to identify highly correlated residue/position 
pairs with the lowest P values. Each recursive iteration identifies the 
most statistically significant residue/position pair meeting a user-
defined binomial probability threshold (in this study taken as P < 10−6) 
and occurrence threshold (which represents the minimal number of 
sequences in the phosphorylation data set needed to match the resi-
due/position pair). When such a pair is found, the sequence spaces of 
the phosphorylation and background matrices are reduced by retaining 
only those sequences containing the selected residue/position pair, and 
a new binomial probability matrix is calculated (see Fig. 1). This recur-
sive pruning procedure is repeated until no more statistically significant 
residue/position pairs that meet the occurrence threshold are detected. 
At this point the motif is identified by the tally of residue/position pairs 
selected during this step.

The next major step of the algorithm involves set reduction of the 
phosphorylation and background data sets by removing all of those 
sequences that match the motif identified in the motif-building step. The 

purpose of this step is to remove the effects of those peptides with iden-
tified motifs from confounding the search for other significant motifs. 
Thus, performing the sequential loop of motif building followed by set 
reduction results in a decomposition of the phosphorylation sequence 
database into a list of significant motifs. The algorithm is complete (that 
is, the loop exits) when the motif-building step fails to identify any sig-
nificant residue/position pairs.

Algorithm validation
To test the effectiveness of our algorithm, we applied it to a linguistic 
data set to determine its ability to extract English language motifs, that 
is, English words or common word fragments. Using a framework pre-
viously conceptualized by Bussemaker et al.14 to test their algorithm 
for the detection of regulatory DNA motifs, we ran our motif-building 
strategy on the first ten chapters of the classic English novel Moby Dick15 
with random characters (at frequencies identical to those found in the 
original text) inserted between words14. Using the criteria P < 10−6 and 
occurrences ≥ 10, we extracted 384 unique motifs of which 371 mapped 
back to English words in the original text, indicating a false positive rate 
of 3.4% (Supplementary Tables 1–4 online). Additionally, the motifs 
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Figure 1  Overview of motif-building strategy. The algorithm can be divided into two major steps. In step 1, the motif is built through a recursive search of the 
sequence space with each iteration yielding the most significant residue/position pair until no more significant pairs could be detected. This is shown here by 
P/1, R/-3, and R/-5, thus making the first motif RxRxxsP (where ‘x’ denotes any residue, and lowercase letters denote phosphorylated residues). Set reduction 
occurs in step 2 whereby all the sequences containing the motif are removed from both the phosphorylation and background data sets. The motif logo is 
created from just the sequences removed from the phosphorylation data set following step 1. Though this figure depicts only one iteration of the algorithm, it 
is the sequential iteration of steps 1 and 2 that ultimately leads to the final list of motifs. See text for greater detail.
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extracted covered 93.4% of the English words 
in the original text (3,886 out of 4,160). If we 
required the motifs to have at least two fixed 
letter/position pairs (aside from the central 
letter), a scenario more suitable for a large lin-
guistic data set, then 317 unique motifs were 
extracted with only one false positive (FP) (FP 
rate = 0.32%) and a coverage of 67.1%. It is 
important to note that because approximately 
half of the data in this analysis were composed 
of random characters, the false-positive rate was 
substantially higher than would be expected in 
the phosphorylation data set analysis where all 
of the data were centered on true phosphorylation sites. Nevertheless, to 
remain conservative, we retained these same stringent P value thresholds 
in our biological analyses.

In order to more closely mimic the biological situation, we further 
validated our approach using two additional data sets. The first of these 
consisted of 300 in silico–generated artificial proteins (Supplementary 
Table 5 online). These synthetic proteins were created using human 
proteome residue frequencies and varied between 50 and 700 residues 
in length. The proteins were then studded at random positions with the 
following five motifs, DxxSQxN, RxSxxL, TVxSxE, RxSxxP, and KSxxxI 
(‘x’ residues retained background residue frequencies). To ensure that 
the artificial data set was sufficiently challenging, we inserted each motif 
at most once in only ~50% of the proteins. To deal with the difficulty 
of an unaligned data set, we created a ‘pseudo-alignment’ by taking a 

sliding window of all 13-mers in the data set and dividing this into 
20 subsets based on each of the central residues. The motif-extraction 
algorithm was then run independently on each of these subsets (with the 
set of all 13-mers as a background data set). Using the same parameters 
established in the linguistic analysis, and with a run time of under 5 
min, the method was able to build and extract all five motifs in various 
alignments with no false positives. Because each of the motifs contained 
an ‘S,’ the S-centered analysis extracted all five motifs at once (Table 1). 
However, the D-, E-, Q-, N-, R-, L-, T-, P-, K-, V- and I-centered analyses 
also extracted the correct motifs containing those particular residues 
(data not shown). For example, the Q-centered analysis extracted only 
the motif DxxSQxN while the R-centered analysis extracted the motifs 
RxSxxL and RxSxxP. Thus the algorithm does not depend on a priori 
knowledge of any specific residues contained in the motif which may 

 Table 1  S-centered motifs extracted from an in silico generated protein data set                      
containing the motifs RxSxxL, RxSxxP, TVxSxE, DxxSQxN and KSxxxI

Motif* Score** “S”–centered data set 
(Matches/Size)

Background data set 
(Matches/Size)

....R.S..L... 32.00 199 9,774 758 111,506

....R.S..P... 28.82 192 9,575 547 110,748

...TV.S.E.... 40.85 137 9,383 154 110,201

...D..SQ.N... 40.46 128 9,246 135 110,047

.....KS...I.. 24.15 158 9,118 413 109,912

* P < 10−6, occurrences ≥ 20. ** Score = ∑-log(P).

a

c

b

e

f

g

hd

Figure 2  Sequence logo representations of various extracted motifs. (a) Most significant motif from the threonine phosphorylation data set. 
(b,c) Examples of significant motifs from the serine phosphorylation data set. (b) Extracted cyclin-dependent kinase motif. (c) Extracted casein 
II kinase motif. (d) Most significant motif from the serine phosphorylation data set. (e) One of the NPM-ALK fusion kinase motifs showing a 
phosphorylated tyrosine residue in C2H2 zinc finger domain. (f) Candidate c-Src motif similar to that found by combinatorial peptide library screening 
approaches. (g) Unique candidate c-Src motif. (h) Motif similar to (f) extracted from pervanadate-treated Jurkat cell data set consistent with known 
Src activation within these cells.

ANALYS IS
©

20
05

 N
at

ur
e 

Pu
bl

is
hi

ng
 G

ro
up

  h
ttp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy



1394 VOLUME 23   NUMBER 11   NOVEMBER 2005   NATURE BIOTECHNOLOGY

allow for the discovery of biologically important residues. As in the lin-
guistic analysis, it should be noted that this was a much more complex 
data set than would be seen in a phosphorylation study because only 
~1–2% of the 13 mers contained a given motif.

Though the next data set used to validate our algorithm was signifi-
cantly less complex than the aforementioned ones, it closely resembled 
the intended application of the algorithm (Supplementary Table 6 
online). To generate this data set we used the Phospho.ELM database16 
to extract serine-phosphorylated peptides experimentally determined to 
be substrates of the following four kinases: Ataxia Telangiectasia Mutated 
(ATM) (43 sites), Casein II (184 sites), Calcium/Calmodulin-dependent 
protein Kinase II (CaMK II) (41 sites) and Mitogen-Activated Protein 
Kinase (MAPK) (30 sites). Application of the motif-building algorithm 
to this combined data set resulted in the extraction of six motifs cor-
responding to the precise consensus sequences for ATM, Casein II and 
CaM II kinases (Table 2). In the case of MAP kinase, the small size of 
the initial MAPK data set yielded an sP motif instead of the canonical 
PxsP motif.

Comparison to other algorithms
Despite the wealth of motif-discovery algorithms designed to predict 
transcription factor binding sites, tools for the extraction of protein 
motifs have not kept pace. Though no algorithms exist with the specific 
intention of extracting protein phosphorylation motifs, we have cho-
sen four of the most popular protein motif discovery programs against 
which to benchmark our algorithm. We applied the TEIRESIAS17, 
Pratt18, Gibbs motif sampler19 and eMOTIF20 algorithms through 
their online servers to the aforementioned in silico and Phospho.ELM- 
derived data sets used to test our approach.

The Gibbs motif sampler is an iterative Monte Carlo procedure, 
which results in a position-weight matrix representation of a motif. 
When applied to the two test data sets the Gibbs sampler extracted only 
DxxSQxN from the artificial-protein data set and HS[IS][PY][SPHE] 
(a false positive) from the Phospho.ELM-data set.

Pratt operates through pruned depth-first search of the sequence 
space and returns an almost unlimited number of highly generalized 
patterns, which vary drastically in accordance with the large number 
of parameters. Of the top 1,000 motifs returned by the Pratt algorithm 
on our artificial-protein data set, several appeared to be related to our 
inputted motifs, but none were exact matches and the overwhelming 
majority did not resemble any of the five inserted motifs. When applied 
to our Phspho.ELM-derived test set, Pratt returned 1,000 motifs which 
were almost entirely acidic in nature. The first ATM-like motif appeared 
as motif number 492 (SQxxxS).

The TEIRESIAS algorithm is based on an exhaustive search of small 
patterns followed by a convolution phase in which the small patterns 
are joined to form longer ones. Using our artificial protein data set 

TEIRESIAS extracted the motifs TVxSxE and DxxSQxN as the 4th and 
6th hits, respectively. These were then followed by a long list of motifs 
containing serine and leucine presumably because of their increased 
frequency in the human proteome and the lack of background filter-
ing in the algorithm. None of the other three motifs were found in 
the top 500 patterns returned by TEIRESIAS. When tested against 
our Phospho.ELM-derived data set, the program returned all four 
kinase motifs: casein II kinase motif sxxE (hit no. 1), ATM motif sQ 
(hit no. 17), CaM II kinase motif Rxxs (hit no. 30) and MAP kinase 
motif sP (hit no. 40). While TEIRESIAS was the only algorithm tested 
that returned all four kinase motifs, the high number of false-positive 
motifs between these true positives unfortunately limits the applicabil-
ity of the algorithm to most biological data sets of this nature.

The final protein motif discovery tool we tested was eMOTIF. 
By using a prealigned data set this program uses a pruned exhaus-
tive search to find motifs with high specificity and coverage. Since 
eMOTIF requires a prealigned data set, we used the same set of 13 mers 
centered on ‘S’ used for our motif-building analysis as input for the 
artificial-protein data set. Probably because this data set was not a true 
alignment, eMOTIF was unable to form any motifs. However, when 
applied to the Phospho.ELM-derived data set, eMOTIF returned 497 
motifs. Inspection of these motifs revealed a majority of highly general-
ized acidic motifs. The specific motifs for two of the expected kinases, 
namely ATM and CaMK II, were found in the middle of the list.

Analysis of mass spectrometry phosphorylation data sets
Table 3 shows the results of the motif extraction algorithm applied 
to the set of threonine phosphorylated peptides from the Beausoleil, 
Jedrychowski et al. 8 data set. The most significant motif identified, tPP 
(where lowercase letters indicate phosphorylated residues) appeared in 
62 unique sequences from the data set, representing ~32% of the phos-
phorylation data. The same motif was identified in only 0.7% of the 
background data set, thereby highlighting the statistical significance of 
this motif. To further visualize the identified motifs, we used sequences 
from the subset of the phosphorylation data set containing the motifs to 
construct sequence logos in which the height of each residue in the logo 
was proportional to its frequency in the subset21,22. It is evident from 
the sequence logo for the tPP motif that a preference for basic residues 
exists at the –3 position of the motif (Fig. 2a).

To address the issue of conservative amino acid substitutions, often 
found in kinase motifs, we created degenerate phosphorylation and 
background data sets whereby the 20 amino acids were condensed into 
an 11-amino-acid code based on residue characteristics (see Methods 
and shaded portions of Table 3). Not surprisingly, the degenerate analy-
sis yielded a more specific analog of the initial motif, [RK]xxtPP (where 
‘x’ denotes any residue, ‘t’ represents the phosphorylated threonine and 
[RK] denotes R or K at that position), which was 168-fold overrep-

resented in the phosphorylation data set as 
compared to the background. Sequences from 
the data set that contained this phosphorylated 
motif indicated a significant number of tran-
scription-related proteins including eIF4γ2, 
eIF3, HOMEZ, PPRB, TCF20, RUNX1 and 
DRPLA. Despite their overwhelming statisti-
cal significance in this data set, it is interesting 
that the biological significance of these motifs 
has yet to be reported in the literature.

The motif analysis of serine phosphorylated 
peptides from this data set indicated success-
ful decomposition into 12 previously identi-
fied kinase motifs and 6 novel motifs (Table 3, 

 Table 2  Motifs extracted from an experimentally validated data set of ATM, Casein II, 
CaMK II, and MAPK kinase substrates
Motif* Kinase Score** Phospho data set 

(Matches/Size)
Background data set 
(Matches/Size)

......sD.E... Casein II 29.83 33 298 5,574 1,279,892

......s..E... Casein II 16.00 70 265 77,819 1,274,318

......s..D... Casein II 16.00 51 195 61,044 1,196,499

......sQ..... ATM 16.00 38 144 51,451 1,135,455

......sP..... MAPK 9.33 29 106 80,073 1,084,005

...R..s...... CaMK II 8.78 21 77 57,969 1,003,932

* P < 10−6, occurrences ≥ 20. ** Score = ∑-log(P).
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second nonshaded region) which together were able to account for 85% 
of the starting phosphorylated data set. A computational analysis of the 
sequence space of the 1,594 phosphorylated peptides revealed an upper 
bound of 246,383 potential motifs (containing 1, 2 or 3 nonwildcard 
positions). If we make the highly conservative assumptions that ~100 
serine phosphorylation motifs exist in the literature and all are repre-
sented in the data set, then the probability of extracting a single known 
motif by chance is 0.0004 (100/246,383) and the odds of extracting 12 
known motifs is vanishingly small. Thus, the identification of 12 known 

motifs served both as a validation of the methodology, and a positive 
control for the data. Among these were motifs for MAPK, Cyclin-
Dependent Kinase (CDK), Casein II kinase, AKT, CaMK II and Golgi 
Casein Kinase (G-CK) (see Figs. 2b,c and Table 3). Surprisingly how-
ever, the novel motifs RxRxxsP, RxxsPxP and sPxxxRR were among the 
most significant motifs identified. Although they share similarities with 
both basophilic and proline-directed kinases, these motifs have not been 
previously characterized (example in Fig. 2d). Inspection of the proteins 
identified from the data set containing these novel motifs revealed a

Table 3  Normal and degenerate analyses of phosphorylated threonine and serine motifs from the Beausoleil, Jedrychowski et al.8 data set
Motif Literature Score* Phospho data set (Matches/Size) Background data set (Matches/Size)

Threonine motifs**

......tPP.... Novel 32.00 62 195 142 20,208

......tP..... Proline-directed 16.00 79 133 1,424 20,066

...[KR]..tPP.... Novel 41.12 26 195 16 20,208

......tPP.... Novel 28.11 36 169 126 20,192

...[KR]..tP....[KR] Novel 35.18 10 133 2 20,066

......tP..... Proline-directed 16.00 69 123 1,422 20,064

Serine motifs***

.R.R..sP..... Novel 48.00 34 1,594 2 27,980

...R..sP.P... Novel 38.04 36 1,560 12 27,978

......sP...RR Novel 39.24 25 1,524 7 27,966

...R..sP..... Novel 28.07 70 1,499 69 27,959

....P.sP..... MAPK 28.23 169 1,429 265 27,890

......sP.R... CDK 29.48 69 1,260 75 27,625

......sPP.... Novel 24.87 79 1,191 127 27,550

......sP.K... CDK 24.54 57 1,112 87 27,423

..R...sP..... Novel 23.21 40 1,055 60 27,336

......sP..... Pro-directed 16.00 359 1,015 1,490 27,276

......sD.E... CK II 32.00 95 656 208 25,786

......sE.E... CK II 32.00 68 561 273 25,578

.R.RS.s...... AKT 41.31 22 493 10 25,305

...RS.s...... AKT-like 25.21 29 471 93 25,295

...R..s...... CaMK II 16.00 63 442 1,043 25,202

.....DsD..... CK II-like 24.58 25 379 125 24,159

......s.D.... CaMK II 9.69 55 354 1,459 24,034

......s.E.... G-CK 10.44 60 299 1,802 22,575

.[KR].[KR]..sP....[KR] Novel 64.00 20 1,594 0 27,980

...[KR][ST].sP...[KR]. Novel 56.68 26 1,574 1 27,980

...[KR]..sP.P... Novel 41.84 47 1,548 20 27,979

......sP.[KR]... CDK 31.95 157 1,501 203 27,959

....P.sP..... MAPK 30.52 158 1,344 240 27,756

......sP...[KR][KR] Novel 39.61 38 1,186 20 27,516

...[KR]..sP..... Novel 26.93 81 1,148 126 27,496

......sPP.... Novel 23.48 62 1,067 114 27,370

......sP..... Proline-directed 16.00 349 1,005 1,470 27,256

......s[DE].[DE].[DE]. CK II 44.15 107 656 218 25,786

.....[DE]s[DE].[DE]... CK II 39.00 44 549 115 25,568

......s[DE][DE][DE]... CK II 33.83 29 505 106 25,453

.[KR].[KR][ST].s...... AKT 38.33 29 476 57 25,347

......s.[DE].[DE].. CK II-like 22.35 44 447 548 25,290

...[KR][ST].s...... AKT-like 24.43 35 403 281 24,742

......s..[DE].... CK II 9.54 97 368 3,409 24,461

......s.[DE].... CaMK II/G-CK 6.63 60 271 2,365 21,052

* Score = ∑-log(P). ** P < 10−6, occurrences ≥ 10. *** P < 10−6, occurrences ≥ 20.
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disproportionate number of the so-called RS domain–containing pro-
teins involved in RNA binding and splicing23. It should also be noted 
that the serine motifs were robustly identified even when differing back-
ground data sets were chosen (see Box 1, Table 4 and Supplementary 
Tables 7–10 online).

Although we demonstrated the ability of the motif-building algorithm 
to decompose a large data set into constitutive motifs, we also wished to 
test the performance of the algorithm on small data sets containing fewer 
motifs. To this end we used the data sets from the Rush et al.6 tyrosine 
phosphorylation immunoaffinity- tandem mass spectrometry (MS/MS) 
study. The first of these data sets contained tyrosine phosphorylated 
peptides from two cell lines, Karpas 299 and SUD-DHL-1, both of which 
are known to express constitutively active Nucleophosmin-Anaplastic 
Lymphoma Kinase (NPM-ALK) 24, an oncogenic fusion tyrosine kinase. 
The degenerate motif-building analysis was able to extract four novel 
motif classes (Table 5, first shaded region). These motifs represent can-
didate consensus sequences for NPM-ALK, a kinase which currently 
has no known consensus.

Figure 2e shows the sequence logo for the Exxy NPM-ALK motif. 
Inspection of this sequence logo indicated a clear C2H2 zinc finger 
domain consensus sequence, with the phosphorylation site falling 
between the second histidine (position –6) and first cysteine (position 
2) of the domain25. Interestingly, there are 14 unique phosphorylated 
C2H2 zinc fingers identified by the data set, all of which contain an 
invariable glutamic acid at the –3 position despite the fact that this resi-

due is not well conserved among all members of the C2H2 zinc finger 
family of proteins. Though not mentioned in the Rush et al.6 study, this 
represents the first example of tyrosine phosphorylation in a zinc finger 
domain. The possibility exists that this phosphorylation event interferes 
with zinc coordination and may shed light on the poorly understood 
process by which zinc fingers associate and dissociate from their cognate 
DNA sequences.

The next data set we analyzed from this study contained tyrosine 
phosphorylated sequences from cells expressing constitutively active c-
Src kinase. The optimal substrate sequence for c-Src has been determined 
by combinatorial library screening methods to be DEEIy[GE]EFF26. 
Comparison of the consensus to the motifs identified in this study 
yielded some striking similarities and differences (Table 5). The sequence 
logo for the c-Src motif yD (Fig. 2f), despite containing only 26 unique 
sequences, shares similar residue characteristics at nearly all positions 
with the in vitro–determined consensus, whereas the most significant 
motif identified, yS, bears only slight resemblance to the library-based 
c-Src motif (Fig. 2g).

The normal and degenerate motif analysis from the pervanadate-
treated Jurkat cells in the third Rush et al.6 data set also revealed several 
motifs, all of which are indicative of the known Src activation in these 
cells27. One such significant motif (Fig. 2h) contained a proline at the 
+3 position (accounting for approximately one-fifth of the data set), 
consistent with recent work that has indicated the ability of Src kinase 
to also phosphorylate YxxP motifs28.

Outlook
As proteomic sequence data sets grow ever 
larger, tools for the extraction of biologically 
relevant motifs will become even more useful. 
The algorithm presented here represents an 
attempt to extract biologically relevant motifs 
based on sequence information from large-
scale mass spectrometry–based data sets, and 
is meant to serve as a starting point for future 
research. Using a statistical framework that 
does not assume independence of positions 
in the motif owing to a dynamic statistical 
background, a two-step methodology of motif 
building and set reduction is used to decom-
pose a given data set into its constitutive motifs. 
The strategy taken is substantially different 
from previous work in the realm of protein 
motif discovery, and its validity has been dem-
onstrated through direct comparison to other 
motif discovery algorithms. Furthermore, the 
approach’s usefulness has been exemplified 
through its ability to extract known and novel 
motifs from several large-scale MS/MS-based 
phosphorylation data sets. Since the motifs 
and their cognate position weight matrices are 
generated from actual in vivo phosphorylation 
sites as opposed to synthetic peptide libraries, 
the method may lead to an improvement in 
phospho-site prediction. It should be noted 
however, that the derived position weight 
matrices, and not consensus sequences alone, 
should be used in the search for potential phos-
phorylation sites, as they contain information 
on residue frequencies surrounding the ‘locked’ 
sites and will help reduce false-positive rates. 

Box 1  Sensitivity to background data sets

One of the defining features of the presented algorithm relates to the use of a large 
background data set upon which dynamic statistical calculations could be performed to 
ensure motif relevance. Therefore, we sought to test the algorithm’s sensitivity to various 
background data sets. To carry out this analysis we used four differing backgrounds 
on the serine phosphorylation data from the Beausoleil, Jedrychowski, et al. 8 study. 
Surprisingly, the algorithm was very robust, yielding very similar sets of motifs even when 
a randomized peptide data set was used as a background (see Table 4). In most cases, 
the differing motifs were simply analogs of motifs from the MS/MS-based analysis. For 
example, the more specific casein kinase motifs sDxExE and DsExE, were found in three 
out of four of the tested background data sets (Supplementary Tables 7–10 online). The 
similarity of extracted motifs was likely due to our choice of using high significance and 
occurrence thresholds in the analyses. The background data set primarily acts as a filter 
for nonsignificant motifs, however, owing to the set reduction strategy that limits the total 
number of motifs that can be extracted, coupled with the fact that most motifs become 
more significant in the face of a random background, the overall character of the extracted 
motifs does not change dramatically. It should be noted that the background cannot 
act as a useful filter without a fairly large number of sequences because of the dynamic 
pruning of the background data set in the motif-building procedure (we suggest an order 
of magnitude more sequences in the background than in the data set for reasonable 
probability estimates).

Table 4  Similarity of extracted motifs using various background data sets
Background data set used Number of motifs 

extracted
Exact motif overlap with full MS/MS-based 
serine centered data set

Half-sized MS/MS-based data set 
(13,990 sequences)

17 17 (100%)

Quarter-sized MS/MS-based data set 
(6,995 sequences)

21 12 (57%)

All human S centered peptides 
(1,279,892 sequences)

18 12 (67%)

Randomized MS/MS-based data set 
(28,008 sequences)

20 13 (65%)
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We also envision the novel motifs to be used as peptide baits to identify 
corresponding uncharacterized kinases.

Given the success of the algorithm on a linguistic data set, it is appar-
ent that the method has the versatility to extract motifs from a wide 
range of data sets including, but not limited to, other post-translational 
modifications and genomic data. Additionally, the described algorithm 
may lead to the discovery of novel biologically relevant protein motifs 
directly from a raw proteome.

METHODS
Phosphorylation data formatting. The Beausoleil, Jedrychowski, et al. 8 phos-
phoserine and phosphothreonine data set and the Rush et al.6 phosphotyrosine 
data sets were used as starting points for the analysis. Only those tryptic pep-
tides where the exact site of phosphorylation was known were selected. Peptides 
were mapped back to their prospective proteins and six residues upstream and 
downstream of the phosphorylation sites were reextracted from the proteome 
sequence. This step removed the nonuniformity of tryptic peptide fragments to 
produce a data set of known phosphorylation sites in a uniform 13-residue con-
text. In cases where the phosphorylation site was within six residues of a protein 
terminus, the sequence was discarded. Thus, only those sites which had sequence 
information for 12 residues surrounding the phosphorylation site were used. 
The sequences were then filtered for redundancy, so that only unique sequences 
remained. This formatting procedure gave rise to 1,594 phosphoserine-centered 
sequences, 195 phosphothreonine-centered sequences and 573 phosphotyrosine-
centered sequences.

Background data set creation. This analysis was dependent upon the ability to 
compare the distribution of residue frequencies in the phosphorylation data 
set with a background model. Background data sets were created in three ways. 
For the phosphoserine and phosphothreonine analyses, background data sets 
were created using fully-tryptic peptides generated from mass spectrometry 
data in the Gygi lab and searched using the human protein database with high 
Sequest29 thresholds (Xcorr > 2.5, dCn > 0.1). Data were centered on nonphos-
phorylated serine or threonine residues and formatted according to the same 

procedure described in the previous section, thus yielding two similarly aligned 
background data sets containing 27,980 sequences centered on serine and 20,208 
sequences centered on threonine. Owing to the lower abundance of tyrosine 
residues, a second type of background data set for the phosphotyrosine analysis 
was created by taking six residues upstream and downstream of every tyrosine 
residue in the human proteome. This resulted in a background data set centered 
on tyrosine, containing 441,343 sequences. It should be noted, however, that 
despite our intention of using a mass spectrometry–based background to avoid 
mass spectrometry–specific residue biases, performing the serine and threonine 
analyses with a proteomic background as opposed to a mass spectrometry–based 
background did not significantly alter the motifs extracted (Supplementary Table 
9 online). Finally, a third type of background data set with randomized residue 
positions for each of the serine-centered mass spectrometry peptides was cre-
ated (see Box 1).

Degenerate residue positions. To allow for conservative amino acid substitutions 
at various positions, we condensed our phosphorylated peptide and background 
lists from a 20-amino-acid code to a degenerate 11-amino-acid code based on 
chemical properties as follows: A = AG, D = DE, F = FY, K = KR, I = ILMV, Q = QN, 
S = ST, C = C, H = H, P = P, W = W. The analysis was then carried out as described 
for the nondegenerate analysis (see shaded regions of Tables 3 and 5).

Significance analysis. The motif-building strategy was carried out by finding 
successive significant residue/position pairs. Though the significance threshold is 
a parameter of the algorithm, for all analyses in this paper, residue/position pairs 
were deemed significant if they had random probabilities less than 10−6 according 
to a binomially distributed model (equation (1) below),

where m equaled the number of sequences in the data set matrix, cxj equaled 
the count of residue x at position j in the data set matrix, and pxj equaled the 

 Table 5  Normal and degenerate analyses of NPM-ALK, c-Src and pervanadate-treated Jurkat cell phosphorylated tyrosine motifs from 
the Rush et al.6 data set
Motif Literature Score* Phospho data set (Matches/Size) Background data set (Matches/Size)

NPM-ALK motifs**

......y..V... Novel 16.00 47 237 24,781 441,343

...E..y...... Novel 8.90 34 180 24,251 416,562

......y[DE].[ILVM]... Novel 24.63 37 237 10,533 441,343

......y..[ILVM]... Novel 10.69 80 200 84,036 430,810

...[DE]..y...... Novel 7.35 34 120 36,258 346,774

......y....[FY]. Novel 6.22 22 86 24,426 310,516

c-Src motifs**

......yS..... Novel 8.58 40 185 34,153 441,343

......yD..... Src consensus 7.75 26 145 20,509 407,190

...E..y...... Src consensus 6.40 23 119 22,643 386,681

...[DE]..y...... Src consensus 12.76 56 185 46,522 441,343

......y[DE]..... Src consensus 7.37 34 129 38,047 394,821

......y[ST]..... Novel 6.00 33 95 52,558 356,774

......y[AG]..... Src consensus 6.27 26 62 46,997 304,216

Jurkat cell line motifs**

......y..P... Src consensus 8.75 29 151 23,459 441,343

...D..y...... Src consensus 6.61 21 122 19,539 417,884

...E..y...... Src consensus 6.75 22 101 24,466 398,345

...[DE]..y...... Src consensus 15.65 54 151 46,522 441,343

* Score = ∑-log(P). ** P < 10−6, occurrences ≥ 10.

P(m,c
xj 

,p
xj
) = ∑!  "p

xj
 (1 – p

xj
)m–i

m

i=c xj

m
i

i (1)
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fractional percentage of residue x at position j in the current background 
matrix. The result was calculated using the pbinom function in the Math::
CDF PERL module. The function could not calculate probabilities below 
10−16. Since each recursive iteration of the algorithm chose the residue/posi-
tion pair with the lowest binomial probability, if more than one pair had 
probabilities of 10−16, then the pair with the greater frequency in the data set 
matrix was selected.

Motif scores. Despite the statistical significance of every motif extracted, heuristic 
scores for the motifs were calculated as the sum of the negative log of the binomial 
probabilities used to generate the motifs (equation (2) below),

Linguistic analysis. Using the analytical framework previously created by 
Bussemaker et al.14, text from the first ten chapters of Moby Dick by Herman 
Melville15 with random characters inserted between words was retrieved from 
http://www.physics.rockefeller.edu/siggia/projects/mobydick/. By taking a sliding 
13-character window, the text was then transformed into a matrix of all 13-char-
acter strings, thus constituting the background data set. From this background 
data set, 26 subsets were created, each being centered on a different letter of the 
alphabet. Using the background data set and each of the subsets, the motif-build-
ing methodology (with P < 10−6, and occurrences ≥ 10) was carried out 26 times, 
thus yielding motifs centered on every letter of the alphabet (Supplementary 
Tables 1–4 online).

Comparison to other algorithms. To compare our algorithm to other motif 
discovery tools, we input our synthetically generated list of 300 proteins and the 
manually curated phosphorylation list containing 298 13-mers to four websites: 
Pratt at http://www.ebi.ac.uk/pratt/ with parameters C% = 2%, PL = 13, PN = 
50, PX = 5, FN = 2, and FL = 1; TEIRESIAS at http://cbcsrv.watson.ibm.com/
Tspd.html with option ‘exact discovery’ and parameters L = 2 or 3, W = 5 and 
K = 2; eMOTIF at http://motif.stanford.edu/emotif/emotif-maker.html with 
a 10% match threshold; Gibbs motif sampler at http://bayesweb.wadsworth.
org/cgi-bin/gibbs.9.pl?data_type=protein with number of patterns = 5, max 
sites per sequences = 1, motif width = 5, estimated total sites = 40.

Public access to algorithm. Access to the algorithm will be available through a 
website currently under construction at, http://motif-X.med.harvard.edu/ which 
will allow users to input their sequence data and adjust the various algorithm 
parameters to retrieve motif results.

Programming and sequence logos. All programming and analysis was done using 
the PERL programming language on a Linux workstation (2.2 GHz microproces-
sor with 1.5 GB RAM). Sequence logos were generated online using Weblogo21 
at http://weblogo.berkeley.edu/

Note: Supplementary information is available on the Nature Biotechnology website.
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